给定实直线 L L L 上 n n n 个开区间组成的集合 I I I,和一个正整数 k k k,试设计一个算法,从开区间集合 I I I 中选取出开区间集合 S⊆I S \subseteq I S⊆I,使得在实直线 L L L 的任何一点 x x x,S S S 中包含点 x x x 的开区间个数不超过 k k k。且 ∑z∈S∣z∣ \sum\limits_{z \in S} | z | z∈S∑∣z∣ 达到最大。这样的集合 S S S 称为开区间集合 I I I 的最长 k k k 可重区间集。∑z∈S∣z∣ \sum\limits_{z \in S} | z | z∈S∑∣z∣ 称为最长 k k k 可重区间集的长度。
对于给定的开区间集合 I I I 和正整数 k k k,计算开区间集合 I I I 的最长 k k k 可重区间集的长度。